
J .  Fluid Mech. (1977), vol. 82, part 4, pp .  643-657 

Printed in areat Britain 
643 

The refraction of head seas by a long ship. Part 2. 
Waves of long wavelength 
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(Received 25 February 1977) 

It is known that head seas cannot travel without deformation along a cylinder of full 
constant cross-section, and recent calculations ham indicated that the wave amplitude 
near the cylinder ultimately decreases as the waves travel along the cylinder, i.e. that 
the waves are refracted away from the axis of the cylinder. It was assumed in these 
calculations that the cross-section was a half-immersed circle of radius a of the same 
order as the wavelength 2n/K, but the method can probably be adapted to arbitrary 
full constant cross-sections. (There is however another calculation which indicates 
that for a thin ship the wave amplitude ultimately increases.) In  the present paper 
these calculations are extended. The circular section is again studied but it is now 
supposed that the wavenumber Ka may be small. Uniformly valid expressions for the 
wave potential are obtained which show that for small Ka the refraction becomes 
significant only when Kx (the dimensionless distance along the cylinder) is so large that 
the product (Kz)*v,(Ka) is also large; here the function v,(Ka) N 2Ka arises in the 
solution of a certain eigenvalue problem. (The uniformly valid expressions also 
suggest an interpretation of the thin-ship calculation which resolves the apparent 
inconsistency.) The same method is applied to the waves generated by a pulsating 
source on an infinite cylinder, and similar results are obtained. 

1. Introduction 
In  earlier work the effect of a long cylindrical ship on head seas was considered. Thus 

it was shown (Ursell 1968, hereafter referred to as 11) that head seas cannot travel 
along such a ship without deformation. When the horizontal diameter 2a and the wave- 
length 2n/K are of comparable magnitude this deformation can be shown to consist of a 
progressive refraction away from the axis of the ship (Urselll975, hereafter referred to 
as IV); the total wave amplitude along the ship decreases like (Kx)-*, where x is the 
distance measured along the ship. Another,result relates to a ship with a thin wedge- 
like cross-section for which Ka is very small; it  was shown in $ 5  of I1 that the 
amplitude of the diffracted wave increases like (Kx)B along the ship. It is of some 
interest to investigate how these results can be reconciled; also, in practical applica- 
tions the parameter Ka is often quite small. In  the present paper we shall accordingly 
be concerned with the asymptotic behaviour of the wave motion along the ship when 
Kx is large while Ka is small. The results are consistent with earlier results when Ka 
is of order unity. 

The same methods will be used as in IV, except that the asymptotic treatment of I V  
will be replaced by a uniformly asymptotic treatment which remains valid when Ka is 
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allowed to tend to zero. Repetition will be avoided where possible, and the results of IV 
will be freely quoted. As in IV, linearized theory will be used, the ship will be replaced 
by an infinitely long horizontal cylinder of constant cross-section on which the normal 
velocity is suitably prescribed, and the cross-section will be taken to be a half-immersed 
circle. Three problems were considered in IV. Problem 1 was concerned with head seas 
incident on a fixed semi-infinite ship, problem 2 with waves generated by a pulsating 
source on an infmite ship, and problem 3 with the wave pattern generated by an infinite 
nearly cylindrical ship moving along its length through still water. The mathematical 
treatments of problem 2 and problem 3 are almost identical, and problem 3 will there- 
fore not be considered in the present paper. We shall find, as in IV, that the form of the 
asymptotic behaviour for large K x  depends only on the form of the singularities of the 
Fourier transform @(k, y, z )  near k = K ,  and that this can be found without finding 
individual coefficients. For the sake of clarity it will be convenient to begin with 
problem 2. We shall then pass on to problem 1, which involves some additional 
complications. 

2. Problem 2: a distributed pulsating source on an infinite cylinder 

satisfies the equation of continuity 
The same notation will be used as in $4 of IV. The velocity potential q5z(x, y, z )  e-*at 

(g+$+g) q5z(x ,y ,x)  = 0 in the fluid, 

the boundary condition 

( K  +a/&) q52 = 0 on the mean free surface x = 0, r > a (2.2) 

a$,/& = v(x, 8 )  on the cylinder r = a. (2.3 1 

and the boundary condition 

(The index 2 will usually be omitted in the calculations of the present section.) It is 
assumed, as in IV, that v(x, 8) = 0 when 1x1 > I ,  where 1 is an arbitrary length, and that 
v(x, 8) is an even function of 8, but these restrictions can easily be removed. There is also 
the radiation condition that 6 represents outward-travelling waves at infinity. A 
method of solving this problem was given in $ 4  of IV. Let @ ( k , y , z )  and V ( k , 8 )  be 
defined by the equations 

ncospY(kr, 8, cosp) +sinp9(kr,8, C O S ~ )  

n cos p To@) +sin /3 R,(k) @(k, Y, 2) = a% 

9 (2.6) 
7~ cos p T2m( k )  + sin p R,( k) Yzm( kr, 8, cos p)  21 n cos p T,(k) +sin p R,( k )  Kkm(ka) 
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where Klk = cosp (0 < p < in) and where the functions 9-, 9 and YZm are defined 
in the appendix at the end of the present paper. They satisfy (2.1) and (2.2). The 
coefficients To, T,, and R,, R, are the coefficients in the expansions (over the range 

and 

here T(k, 8 )  = (aa9-/ar), R(k, 0 )  = (aaB?lar> and V, is an arbitrary normalizing con- 
stant. Angular brackets will be used to indicate that r is to be put equal to a after 
differentiation. The coefficients depend on V(k, 8) ;  they are functions of k and involve 
K and a as parameters. The form (2.6) is appropriate when k > K ;  when 0 < k < K we 
write p = ia (0 < a < co) to obtain equation (4.1 1) of IV. This is the appropriate form 
since /3 was taken to be positive in (2.6) above, and since the contour in the k plane 
passes below k = K .  [Note a misprint in equations (2.15) and (2.17) of IV: on the right- 
hand sides the symbol & should be replaced by T . Note also that the left-hand side of 
equation (4.9) of IV should read T ( k l  e).] Let us write 

sinp Yo(kr,01/3) =Y(kr ,8 , /3 )  = 2ncosp9-(kr,8, cosp)+ZsinpW(kr,e, cosp), 
(2.9) 

fi'(k,O) = 2ncOsPT(k,e)+ZsinPR(k,e) ,  (2.10) 

Szm(P, Ka) = . 2 n c o ~ ~ T ~ ~ ( k ) + 2 s i n / 3 R , ~ ( k ) ;  (2.11) 
also let us write 

, I  

Then we have 

and 

(2.13) 

Y(kr,8, - p )  = 4ncospe-KZcosh(Kytan/?)-Y(kr,8,/3). (2.15) 

3. Asymptotic evaluation for large Kx and small Ka 
From (2.4) the potential 

00 

#(x, y, x )  = _f_ / @(k, y, z )  eikzdk 
2n 

dP (3.2) 2n cosz p 
1 K sin p 

= - f @(K sec p, y, z )  exp (iKx sec p) - 

may be determined in principle but not in practice, since @(k, y, x )  has not been found 
here in an explicit form. We are however mainly concerned with the waves of wave- 
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number K for which Kx is large and which are near the cylinder, where y and z are 
bounded; in other words, we are concerned with contributions to the integral (3.2) from 
the saddle point /3 = 0; cf. p. 693 of IV. When Ka was not small or large it was found in 
I V  that the denominator So(/?, Ka) does not vanish near /? = 0, and that the asymptotic 
behaviour of the wave term $ K ( ~ ,  y, z )  in $(x, y, z )  is then given by 

through a straightforward expansion of @(k, y, z )  about k = K. The potential 
@*(K, y, z )  is that solution of 

(a2/8y2 + 82/8~2 - K2) @* = 0 (3.4) 

which satisfies (a8@,/8r) = 0 on r = a and @*(K, y, z )  - - 2nIKyl e-=S as (yJ +a; 
see $ 2  of IV. 

When Ka and kr = Kr sec /3 are both small, the convergent power-series expansions 
of the wave functions F, W and YZm (given in the appendix) can be seen without great 
difficulty to be also asymptotic expansions. By retaining only a few terms (as in $ 4  of 
Ursell 1962, hereafter referred to as I) it is then possible to solve the systems (2.7) and 
(2.8) approximately for small Ka. A trial calculation for special velocity distributions 
of the form v(x, 0 )  = vo(z) cos 0 showed that the denominator 

So(/3, Ka) = 2n cos /3 To( k )  + 2 sin /3Bo(k) (3.5) 

has a small real negative zero at  /3 = -P0(Ka), say, where Po(Ka) - 2Ka as Ka+ 0. 
(It will be seen later, in $4, that Po(Ka) is independent of v(x, 0) . )  Equations (2.13) and 
(3.1) show that 

where So(/3, Ka) has a real simple zero /? = -P0(Ku) near the saddle point /3 = 0, and 
where we are concerned with the contribution &(x, y, z )  from the neighbourhood of 
/3 = 0. Thus we must use a uniformly asymptotic technique (a simple modification of 
the method of steepest descents) which is applicable when the integrand has a simple 
pole near a saddle point (cf. appendix 2 of 11, for the case of a double pole). 

As in the ordinary method of steepest descents, take a new variable of integration v, 
as follows. Write i v 2  = sec /3 - 1 = 2 sin2 g/3/cos /3 and take the positive square root 

v = 2sin&/3/(cos/3)f; 
then v - /? as /3+ 0. Also write 

(3.7) 

v0( Ka) = 2 sin ) /30 / (  cos Po)+. (3.8) 

Near /3 = 0, let the non-oscillatory part of the integrand of (3.6) be expanded in a 
convergent series of the form 
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). Thus the right-hand side of where, from (3.16) below, we have A( 
(3.9) is 

) = -voBo( 

Then, by the famiIiar argument used to prove Watson's lemma, 

(3.10) 

(3.11) 

+ Bzm( )$ v2m exp (+iKxv2) dv, (3.12) 
m= 1 L 

where the path of integration in the complex v plane may be taken to be the path L 
from v = - co exp ($in) through v = 0 to v = exp (tin). Retaining only the leading 
terms, we see that 

(3.13) 
where 

E; (S)  = ILSC exp (iw2) dw. 

To find A(  ) multiply (3.9) by v +vo and let B-. -Po and v-. - vo. Then 

To find Bo( ), put /3 = 0 and v = 0 in (3.9). Then 

whence 

(3.14) 

(3.16;) 

An explicit expression can also be found for B2( ). For if it  is assumed that 

Wx)* vo(Ka) 

is large, then the asymptotic expansion for F'. can be used (see appendix) and the calcu- 
lation of equation (4.12) of IV then shows, after comparison with (3.3) above, that we 
must have 

(3.16) 
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where the two terms on the right become large and tend to cancel out when Ka tends 
to  zero. From (3.6) and (3.13) we now find (restoring the index 2) that 

- 

or, from (3.17), 

where 
w3 

exp (iw2) dw. 

The term (3.19) can be omitted when Kx is large. For (3.16) shows that vi @,( )/To(K) 
is of the same order as Bo( ), and therefore B,( ). Thus the ratio of (3.19) to (3.18) is 
of order (Kx)-lF0{ >. This is of order (Kx)-l, for the ratio F3(43/F1([) is bounded 
for all real positive y since it tends to finite limits when 5 3  0 and when 5 3  a; also 
Fl([) does not vanish when g 2 0. (See the appendix for properties of the functions 
&([).) It follows that 

>/PI{ 

near r = a when Ka(Kx)i 9 1, (3.21) 

on using the asymptotic expansion of Fl(Q. Here vo(Ka) is defined by (4.5) below, and 
(3.21) now shows that (3.3) is valid not only when Kx is large and Ka is neither large 
nor small (as shown in IV) but also when Ka is small and Kx is so large that Ka(Kx)* is 
also large. 

4. The function Ho (Kr,  6, Ka) 
We now investigate the function v,(Ka) in more detail, and show that it is indepen- 

dent of the boundary condition (2.3) on the cylinder. We observe that, if there exists a 
/3,(Ka) such that So( - Po, Ka) = 0, then the expression (2.14) evidently does not involve 
V(k,  6) when /3 = -b0. This observation together with (2.15) suggests the following 
boundary-value problem. 

Problem H .  Determine a value of p, and coeficients h,,(P, Ka) in the expansion 

H(Ksecb,y,z) = exp(-Kz)cosh(KytanP)-- tanPY,(KsecP,y,z) 
1 

4n 

h2m(B’ Ka) Y,(Krsec/?,6, COSP), (4.1) 
cosp +- x Ka m= KLm( Ka see p)  
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such that the boundary condition 

(aaHlar>= 0 on r = a ,  0 < 0 <  
is satisjied 

We have the following result: 

649 

(4.2) 

THEOREM H .  For su&iently small positive Ka the boundary-va2ue problem has no 
solution unless p takes a certain characteristic value p = P,(Ka), where po(Ka) - 2Ka as 
Ka-t 0. The solution when /3 = po(Ka) will be denoted by H,(Kr, 0,  Ka). 

It is almost self-evident that the problem has no solution for prescribed Ka and 
arbitrary p since the boundary-value problems (2.7) and (2.8) above (which have a 
solution for arbitrary p)  contain one more undetermined coefficient than (4.2). 

To prove the result, consider the system 

-(ai[e-K8cosh(Kytan,9)--tan/3Yo 1 
477 

(4.3) 

where h,(p, Ka) is an additional undetermined coefficient. The boundary condition 
(4.2) in problem H corresponds to the condition h,(P, Ka) = 0.  We now note that the 
functions 

tend formally to cos 2m0 when Ka -+ 0, as is readily shown from the known properties 
of the Bessel functions K,( ). (See also equation (2.42) of I.) Thus, in the limit, the 
expansion (4.3) is a Fourier cosine expansion over 0 < 0 < 477. For general Ka, apply 
the operators "s"= ... cos2n0d0 (n  = 0, 1,  2, ...). 

n o  
The system (4.3) is thus transformed into an infinite system 

m 

~ 2 %  = ht,,+ Zanm7L2m ( n  = 0,1, 2, * a * ) ,  

m= 1 

where c2, is the nth Fourier coefficient of the left-hand side of (4.3), and where all the 
a,, can be seen to tend to zero when Ka tends to zero. The parameter h, does not appear 
in the equations for n = 1, 2, 3, . . . , and it can be shown that these can be solved for 
h,, h,, h,, . . . , by iteration when Ka is small enough. It is found that 

h2, = c,,+O(Kamax IcZml) when n = 1,2,3,  ... . 
m 

Then h, can be found from the equation for n = 0, i.e. from 

When kr and Ka are small, the expressions for r a n d 9  in the appendix can be expanded 
in power series, cf. also $ 4  of I. When pis of the same order as Ka, the leading terms on 
the left-hand side are thus found to be (2177) (Ka - 4 tanp)  while the terms in the sum 
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on the right are readily seen to be ~ ( K u ) ,  since the h2m are O(Ku) and the a,, are o(1). It 
follows that h,(/3, Ka)  = 0 for a positive value /3 = /?,(Ku) such that /3,(Ku) N 2Ku. Put 
/3 = b0(Ku) in (4.3); then the coefficients hBm(PO, Ku) can be determined, and the func- 
tionH(Ksec,d,,y,z) is thendefkedby (4.1). WedeheH(Ksec/3,,y,z) = HO(Kr,8,Ka); 
this concludes the proof of theorem H .  

We note that H,(Kr, 8, Ku) satisfies 

(a2/ay2 + a2/az2 - K 2  sec2,Bo) H, = 0 in the fluid, 
(K+a/az)H,= 0 on z =  0, r > a, 

(aH,la~) = 0 on r =a. 
Also 

H,(Kr,O,Ku)-exp ( -Kz)cosh(Kytan/3,)+(4.rr)-1tan,8,Y,(Ksec/3,, y,z) 
= O(exp( - 1Ky1 sec/l0)) as ly.-+oo. 

We see that H,( 
Ky tan Po tends to zero when Po -+ 0. We also note that 

)+a exponentially when lyI +m but that the rate of increase 

vo(Ka) = 2sin~/30/(~os/30)~, (4.5) 
where /3,(Ku) is defined in theorem H above, and that v,(Ka) - 2Ka when Ku+ 0. 

5. Problem 1 : the action of a fixed long ship on head seas 
The treatment in this section is similar to that in $3 of IV, but some of the approxi- 

mations made there will not be made here. The diffracted potential is replaced by a 
potential q51(x, y, z )  which satisfies the boundary condition 

where 
(aaq5,/ar) = - eiKxh(x) (aae-Kz/ar) on r = a, (6.1) 

h(x) = 
0 on the forward part -GO < x < - 1 ,  ( 1 on the rear part 1 < x < 00, 

and where h(x) is chosen to be an infinitely differentiable increasing function on the 
middle part - 1  < x < 1 .  It is reasonable to hope that this motion will resemble the 
diffracted waves due to a semi-infinite ship. (The index 1 will usually be omitted.) 
For the Fourier transform we then obtain the expansion (see equation (3.13) of IV) 

where 

= - H ( k  - K )  (ae-K5/ar), (5.4) 
in which H ( k )  is the Fourier transform of h(x). Also we have 

(aaY,/ar) = 2 7 ~ ~ 0 t a  T(k, 0 )  + R(k, 0 ) ;  
we note that (aae-Bz/ar) = T(K,8) .  Thus 
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and 

Here Tfk(k) and R''A(k) are coefficients in the expansions 

T(k, 6) = Til)(k) T (K ,  8) + (k) (G p) K2rn 
and 

(5.9) 
R(k,6) = R,'l)(k)T(K,B)+C&%(k)(--). a a y 2 m  

K;rn ar 
On combining these equations we obtain 

(5.10) 

From (5.6) and (5.7) we thus obtain 

277 cosp9+ 2 s i n p 9  - C(2n cosp T!& + 2sin @!A) 

= - H ( k - K )  N(1)(kr767p' Ka) in the notation of (2.12) above. 4P(p, Ka) 
Also (see equation (3.20) of IV) 

xh'(x)dx+O(k-K), i 
k - K  H ( k - K )  = -- - 

which is seen to be of the form 

( 1  +W2)), i 1  
Ksecp- 1 

H ( k - K )  = -- 

where L(p2) = O(pz)  when pz+ 0 and where we write k = K secp, as before. Thus 

$(x, y, z )  = - @ ( k ,  y, z )  eikzdk 
2n ' S  

(5.12) 
N(')( ) exp [iKx(secp- l)] - 2n #d"( p-  

We now observe that near p = 0 the integrand has two simple poles, one at the saddle 
point /3 = 0, the other at the zero /3 = -Po(Ka) of Sd1)(/3, Ka). (The function po(Ka) is 
the same as in 94 above, where we noted that it is independent of V ( k ,  B ) . )  
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As in Q 3 above we write w = 2 sin $/3/(cosP)a but now we expand the non-oscillatory 
part of the integrand in the form 

to take account of the two simple poles. We require C(1)( 

determine C(l), multiply (5.13) by v and let P-+ 0 and w -+ 0. Thus 
), A(1)( ) and ). To 

2 ~ ( 1 ) ( ~ ~ ,  e, 0, K ~ ) / s ~ ( o ,  K U )  = c(q~r,  e, K U ) .  

From (5.8) we note that T,(K) = 1 and T!,(K) = 0, whence 

N(l)(Kr, 8,0, Ku) = 2 n 9 =  2 1 r e - ~ ~ ,  Sdl)(O, Ka) = 2nT0 = 2n; 
thus 

To determine A(1)( 

@)( ) = 2e-K~.  (5.14) 

), multiply (5.13) by v + v o  and let P-. -Po and ~ - 3 - v ~ .  Thus 

A(')( ) = ( 1 + K ( P t ) )  ( ~ + ~ o s ~ ~ ) N ( ~ ) ( K r s e c ~ , , ~ ,  -P,,Ka) 

but we shall not make use of this expression. To determine Bdl) we may apply the 
integral operator 1 (. . .) w-ldv to both sides, where the contour of integration encloses 
both the poles. (The calculation is similar to that for equation (3 .22)  of IV.) We thus 
find that 

vo-lA(l)( ) + B p (  ) = n-l@*(K, y, z ) ,  (5.16) 

where Bdl)( ) is smaller than the other two terms by a factor O(Ku). The result (5.16) 
can also be obtained from equation (3 .25)  of IV  by considering the very distant field 
where Ku(Kx)g 9 1; cf. (3 .16)  above. Substituting (5.13) in (5.12), and proceeding asin 
$ 3  above, we find that 

cos Po( - sin Po) (aflO/aP ) ,8 =-j0 
9 

i ,iKz 
# l K ( ~ ,  y, z )  - - C(l)(Kr, 0, Ka) 

277 V 

where in the first term the path of integration passes below w = 0; thus the integral 
in this term has the value ni since the integrand is an odd function of v along L. Using 
15.14) we find that 

s i e iKx + - Bd1)( ) exp (iiKxw2) dv 2n  
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on using (5.15). This represents the diffracted wave; the total wave field for large x is 
obtained by adding the incident wave e-KzeiKx. Thus 

4 i n c  + $ 1 ~  N ( 

ivo( Ku) 
A n c  + $ 1 ~  N eiKx(D,(K, y, z )  Fo 

near r = a when Kx 9 1, (5.21) 

1 - -e -& ( - 271.;x)+ e $ K x @  *(K,  Y, 2) 
71. 

near r = a when Ku(Kx)+ 1.  (5 .22)  

(5.18) 

i eiKx 
Bdl)(Kr, 8, Ka) F' (5.19) + ~ ( 2 K x ) t  

+ eiKxO((Kx)-#), 
where 

(5.20) 

6. Comparison with the thin-ship calculation 
As was mentioned in 9 1 above, the calculation given in Q 5 of I1 can be interpreted as 

the diffraction of an incident head sea by a thin ship. The normal velocity on the plane 
y = 0 was assumed to vanish when x < 0 and was assumed to be proportional to 
e-KzeiKx when x > 0. It was then found that the resulting (diffracted) wave ultimately 
increases like ( K X ) ~  when x -+ 00 along the plane, whereas the variation along a ship was 
found in I V  to decrease ultimately like (Kx)-b. These results appear to be inconsistent, 
but we shall now show that the apparent inconsistency can be removed by an appro- 
priate interpretation. 

Let us first see how the calculation of 3 5 of I1 can be interpreted as the diffraction of 
a head sea by a thin ship. For this purpose let us consider a semi-infinite ship of thin 
triangular cross-section, draught d comparable to 271./K, small semi-vertical angle E 

and small beam 2d tan E .  The normal velocity induced by the incident wave e-KzeiKX on 
this wedge is (cf. (5.1) above) 

eiKx( - a e-KZ/an) + - K sin E eiKxe--Rz = - (Kb/d) eiKx e-KZ 
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when 0 < x < co and 0 < z < d ;  at all other points of the mid-plane y = 0 the normal 
velocity vanishes. This is nearly the same velocity distribution as in Q 5 of 11, but with 
a multiplying factor b/d,  and it can be shown that it gives rise to nearly the same 
diffracted wave near y = 0, which with the same factor is thus 

O((b/d)  ( K x ) ~ )  = O(Kb(Kx)*). 

Thus the total wave near the thin ship is 1 + O(Kb(Kx))) when Kx is large and Kb is 
very small. 

Let us next consider the amplitude variation near the semicircular ship of $5  above 
when Ku is small, Kx is large and Ku(Kx)h is small. From (5.21) this is given by 

F,{~Kx)~v,(Ku)} = ni - 2in)efirn(4Kx)4 w,(Ku) + . . . 
+ ni{ 1 - (8n)t eii"Ku(Kx)* + . . .}, 

which (except for constant factors) is of the same form as for the thin ship. We cannow 
suggest the following interpretation for the ( K x ) ~  variation found for the thin ship in 
$ 5  of 11: the term (Kx)h should have been multiplied by a factor of order Kb, where 
2b is the beam; the resulting total-amplitude variation 1 + O(Kb(Kx)*) is then valid 
when Kx is large but Kb(Kx)t is small. This interpretation is consistent with $5  of 11, 
since it was implicitly assumed there' that Kb was infinitely small. 

7. Summary of results and discussion 
We have considered the two problems described in 0 1 which were previously treated 

in IV, but have assumed here that the dimensionless wavenumber Ku may be small. 
Problem 1 is concerned with head seas incident on a fixed semi-inkite cylindrical 
ship of semicircular cross-section; it is found that the total wave potential is given 
(asymptotically for large Kx)  by 

near r = u  when K x %  1, (7.1) 

- - I e-tiz (L) 'ei~Za, ( K ,  y, z )  
7r 2nKx 

near r = u when Ku(Kx)*B 1. (7.2) 

Here the function Q,*(K, y, z )  i.s the two-dimensional potential defined in $ 3  above; the 
function wo(Ku) is defined by the eigenvalue problem described in $ 4 above and satis- 
fies w,(Ku) N 2Ku as Ku+ 0;  and the function F0(5), defined in the appendix, is related 
to the Fresnel integral as would be expected in a problem of glancing incidence. The 
argument (+Kx)two(Ku) (which may be small, intermediate or large) is the product of a 
large factor (4Kx)t and a small factor w,(Ku), and this also would be expected in such a 
problem. [Cf., for instance, the expression for the pressure on a semi-infinite plane due 
to a plane sound wave at nearly glancing incidence. This is given in many textbooks, 
e.g. in Jones (1964, p. 588).]  When Ku(Kx)t is large, the asymptotic expansion of 
Fo(<) is applicable and leads to (7.2). This is the same expression as that in equation 
(3.26) of IV, which is thus seen to be valid not only when Ka is of order unity and Kx is 

4inc  + $111 
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large but also when Ka is small and Ka(Kx)t is large. The decay factor (Kx)-t in (7 .2 )  
has no analogue in the acoustic problem. 

Problem 2 is concerned with waves generated by a pulsating source on a fixed 
infinite ship of semicircular cross-section. It is found that the wave potential for large 
Kx is given asymptotically by 

near r = a when K x B  1, (7.3) I 

The function Fl(lJ is also defined in the appendix, and the remarks which have just 
been made about problem 1 are equally applicable to problem 2. 

The calculation in $ 5  of I1 showed that for a semi-infinite thin ship the diffracted 
wave increases like ( K x ) ~ .  The re-examination in $6 above shows that this must be 
multiplied by a scaling factor of order Kb ,where 2b is the (infinitely small) beam of the 
thin ship. Thus the diffracted wave is in fact of order Kb(Kx)*, and comparison with 
problem 1 suggests that this is valid when Kx is large but Kb(Kx)* is small. 

Equation (7.1) shows that the refraction away from the cylinder becomes significant 
when the product Ka(Kx)t becomes large, i.e. when Kx 9 (Ka)-2. The function vo(Ka) 
which appears in this calculation is determined by the eigenvalue problem of $ 4 above. 
Its solution involves analytic continuation to the second (non-physical) sheet of the 
k plane, or to the non-physical part of the p plane, and it is thus difficult to give a 
physical interpretation of the calculation of vo(Ka). 

We note once again that the calculations of the present paper use little more than the 
analytic form of the Fourier transform near k = K ,  and that this can be found fairly 
easily from the form of the expansion (2.6), which however is applicable only to the 
semicircle. For other cross-sections it will be necessary to rephrase the argument in 
terms of integral equations, and this will also be necessary for the study of the other 
limiting case when Ka is large, about which little is known. 

Appendix 

These are defined in 0 2 of I V  (here we have used the relation k = K secp): 
The functions < 9, Y,, 

Y(kr, 8, cosp) = exp ( - kx cosp) cosh (kysinp), 
9(kr,8, cosp) = -pcotpexp( -kzcosp)cosh(kysinp) 

[ a  l v = m  

OD 

+K0(kr+2) X ( -  l)m-l av (I,(kr) cosv8) sinmpcotp, 
m= 1 

Yo(kr ,  8, cosp) = 2ncot/3F(kr, 8, cosp) + 2W(kr, 8, cosp) when IC > K ;  
when k < K ,  put p = -ia, where a > 0, so that 

Y2,(kr, 8, cosp) = K,,(kr) cos 2m8 + 2 cosPK,,-,(kr) cos (2m - 1 )  8 
+ K2m-2(kr) cos (2m - 2) 8, m = 1 ,2 ,3 , .  . . . 
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FIUURE 1 

Here the functions I,,(c) and K,(c) are Bessel functions in the usual notation. For the 
expansions of these potentials for small kr, see $5 2 and 4 of I. 

Expansion of the functions Fm(c) for small and large positive c 
By definition we have 

where the path of integration L goes from w = -ooexp (sin) through w = 0 to 
w = co exp (&in), and where - 5 < 0 lies to the left of L. To obtain the expansion for 
small c, deform the path of integration into the path L,, which near w = 0 has the 
form of the semicircle Iw( = I ,  -@r < argw < in, where I > (51 (see figure 1). 

On L, we have [wI > 151, whence 

By integration by parts we have 
2iqa-1 = sqs+,. 

Also evidently 

and 

for the integrand is odd and the straight parts of L, therefore give a total contri- 
bution of zero. It follows that qs = nexp (aim + iin)/r(+s + B), whence we have the 
convergent expansion 

m ( - 6 e i i n ) k  
Fm(C) = in exp ( - )imn) ;I: 

k = O  r(i++k-+m)* 

We are concerned with the functions Fo, F, and F3, and we note that none of these 
vanishes when 5 = 0. 



The refraction of head seas by a long ship 657 

When [ B 1 we use Watson’s lemma: 

= Z ~ / w ~ + ~ e x p  ( - l ) k  (iw2)dw = * ( - 1 ) k  - 
k=O [ k = O  [ k + l  q-m-k‘ 

In particular, Fo([) N n*eiin C-l, Fl([) - in3 e-fin (5-l and F3(f;) - fn4e*cnC-2, since 
q-l = q-3 = . . . = 0. Here (A 1) and (A 2) have been used. It follows that the ratios 
FJF1 and Fl/Fo are bounded for large positive [. 

It remains to show that Fo(C) and Fl(<) do not vanish for positive 5. We have 

Thus the imaginary part of F,([) is 
* exp ( - P 2 )  dP 

Ic+peiin12 ’ [sin in 1 
which clearly does not vanish when [ is real, except possibly when 6 = 0. Since 
Fo(0) =k 0, it  follows that Fo(C) does not vanish for real positive 5. 

Similarly we have 

Thus the real part of &((5) is 

which clearly does not vanish; so Fl([) does not vanish for real positive 6. 
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